Colloquia - Wenbo Guo, Strengthening and Enriching Machine Learning for Cybersecurity, Virtual, 4:25 - 5:25 pm

Wednesday, January 19, 2022 - 4:25pm to 5:25pm
Event Type: 

Wenbo Guo - man in black suit with close-cropped black hair stands in front of a white background.

Strengthening and Enriching Machine Learning for Cybersecurity


Nowadays, security researchers are increasingly using AI to automate and facilitate security analysis. Although making some meaningful progress, AI has not maximized its capability in security yet due to two challenges. First, existing ML techniques have not reached security professionals' requirements in critical properties, such as interpretability and adversary-resistancy. Second, security data imposes many new technical challenges, which break the assumptions of existing ML models and thus jeopardize their efficacy.


Wenbo Guo is a Ph.D. Candidate at Penn State, advised by Professor Xinyu Xing. His research interests are machine learning and cybersecurity. His work includes strengthening the fundamental properties of machine learning models and designing customized machine learning models to handle security-unique challenges. He is a recipient of the IBM Ph.D. Fellowship (2020-2022), Facebook/Baidu Ph.D. Fellowship Finalist (2020), and ACM CCS Outstanding Paper Award (2018). His research has been featured by multiple mainstream media and has appeared in a diverse set of top-tier venues in security, machine learning, and data mining. Going beyond academic research, he also actively participates in many world-class cybersecurity competitions and has won the 2018 DEFCON/GeekPwn AI challenge finalist award.